436 lines
12 KiB
C++
436 lines
12 KiB
C++
/*
|
|
* location.cpp
|
|
* BoE
|
|
*
|
|
* Created by Celtic Minstrel on 20/04/09.
|
|
*
|
|
*/
|
|
|
|
#include "location.hpp"
|
|
#include "mathutil.hpp"
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <limits>
|
|
|
|
eDirection& operator++ (eDirection& me, int) {
|
|
if(me == DIR_HERE) return me = DIR_N;
|
|
else return me = (eDirection)(1 + (int)me);
|
|
}
|
|
|
|
bool operator == (location p1,location p2){
|
|
if((p1.x == p2.x) & (p1.y == p2.y))
|
|
return true;
|
|
else return false;
|
|
}
|
|
|
|
bool operator != (location p1,location p2){
|
|
return ! (p1 == p2);
|
|
}
|
|
|
|
short dist(location p1,location p2){
|
|
return hypot(p1.x - p2.x, p1.y - p2.y);
|
|
}
|
|
|
|
float fdist(location p1,location p2){
|
|
return hypot(p1.x - p2.x, p1.y - p2.y);
|
|
}
|
|
|
|
short vdist(location p1,location p2) {
|
|
short i,j;
|
|
i = abs((long double)p1.x - p2.x);
|
|
j = abs((long double)p1.y - p2.y);
|
|
return max(i,j);
|
|
}
|
|
|
|
location::location() : x(0), y(0) {}
|
|
location::location(int a,int b) : x(a), y(b) {}
|
|
|
|
location loc(int a, int b){
|
|
return location(a,b);
|
|
}
|
|
|
|
location loc(){
|
|
return location();
|
|
}
|
|
|
|
bool loc_compare::operator()(location a, location b) const {
|
|
// This is just a lexicographical ordering.
|
|
if(a.x != b.x) return a.x < b.x;
|
|
if(a.y != b.y) return a.y < b.y;
|
|
return false;
|
|
}
|
|
|
|
bool location::in(rectangle r) const {
|
|
if(y >= r.top && y <= r.bottom && x >= r.left && x <= r.right)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool operator == (rectangle r1, rectangle r2) {
|
|
if(r1.top == r2.top && r1.left == r2.left && r1.bottom == r2.bottom && r1.right == r2.right)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool operator != (rectangle r1, rectangle r2) {
|
|
return !(r1 == r2);
|
|
}
|
|
|
|
rectangle operator&(rectangle one, rectangle two) {
|
|
return one &= two;
|
|
}
|
|
|
|
rectangle rectunion(rectangle one, rectangle two) {
|
|
int left = min(one.left, two.left);
|
|
int right = max(one.right, two.right);
|
|
int top = min(one.top, two.top);
|
|
int bottom = max(one.bottom, two.bottom);
|
|
return rectangle(top, left, bottom, right);
|
|
}
|
|
|
|
rectangle::rectangle() : top(0), left(0), right(0), bottom(0) {}
|
|
rectangle::rectangle(location tl, location br) : top(tl.y), left(tl.x), right(br.x), bottom(br.y) {}
|
|
rectangle::rectangle(int t, int l, int b, int r) : top(t), left(l), right(r), bottom(b) {}
|
|
rectangle::rectangle(const sf::Texture& texture) : top(0), left(0), right(texture.getSize().x), bottom(texture.getSize().y) {}
|
|
rectangle::rectangle(const sf::RenderTarget& texture) : top(0), left(0), right(texture.getSize().x), bottom(texture.getSize().y) {}
|
|
|
|
bool rectangle::contains(location p) const {
|
|
if(p.y >= top && p.y <= bottom && p.x >= left && p.x <= right)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool rectangle::contains(int x, int y) const {
|
|
return contains(location(x,y));
|
|
}
|
|
|
|
bool rectangle::empty() const {
|
|
if(right < left || bottom < top) return true;
|
|
return height() == 0 && width() == 0;
|
|
}
|
|
|
|
rectangle_size_delegate::rectangle_size_delegate(rectangle& rect, int rectangle::* first, int rectangle::* last) :
|
|
forRect(rect), b1(first), b2(last) {}
|
|
|
|
rectangle_size_delegate::operator int() const {
|
|
return forRect.*b2 - forRect.*b1;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator=(int val) {
|
|
forRect.*b2 = forRect.*b1 + val;
|
|
return *this;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator+=(int val) {
|
|
*this = *this + val;
|
|
return *this;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator-=(int val) {
|
|
*this = *this - val;
|
|
return *this;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator*=(double val) {
|
|
*this = *this * val;
|
|
return *this;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator/=(double val) {
|
|
*this = *this / val;
|
|
return *this;
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator=(const rectangle_size_delegate& val) {
|
|
return operator=(int(val));
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator+=(const rectangle_size_delegate& val) {
|
|
return operator+=(int(val));
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator-=(const rectangle_size_delegate& val) {
|
|
return operator-=(int(val));
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator*=(const rectangle_size_delegate& val) {
|
|
return operator*=(int(val));
|
|
}
|
|
|
|
rectangle_size_delegate& rectangle_size_delegate::operator/=(const rectangle_size_delegate& val) {
|
|
return operator/=(int(val));
|
|
}
|
|
|
|
rectangle_size_delegate rectangle::width() {
|
|
return rectangle_size_delegate(*this, &rectangle::left, &rectangle::right);
|
|
}
|
|
|
|
rectangle_size_delegate rectangle::height() {
|
|
return rectangle_size_delegate(*this, &rectangle::top, &rectangle::bottom);
|
|
}
|
|
|
|
const rectangle_size_delegate rectangle::width() const {
|
|
return rectangle_size_delegate(*const_cast<rectangle*>(this), &rectangle::left, &rectangle::right);
|
|
}
|
|
|
|
const rectangle_size_delegate rectangle::height() const {
|
|
return rectangle_size_delegate(*const_cast<rectangle*>(this), &rectangle::top, &rectangle::bottom);
|
|
}
|
|
|
|
location rectangle::centre() const {
|
|
return location((left + right) / 2, (top + bottom) / 2);
|
|
}
|
|
|
|
location rectangle::topLeft() const {
|
|
return location(left, top);
|
|
}
|
|
|
|
location rectangle::topRight() const {
|
|
return location(right, top);
|
|
}
|
|
|
|
location rectangle::bottomLeft() const {
|
|
return location(left, bottom);
|
|
}
|
|
|
|
location rectangle::bottomRight() const {
|
|
return location(right, bottom);
|
|
}
|
|
|
|
void rectangle::offset(int h, int v) {
|
|
left += h; right += h;
|
|
top += v; bottom += v;
|
|
}
|
|
|
|
void rectangle::offset(location diff) {
|
|
offset(diff.x, diff.y);
|
|
}
|
|
|
|
void rectangle::move_to(int x, int y) {
|
|
offset(x - left, y - top);
|
|
}
|
|
|
|
void rectangle::move_to(location loc) {
|
|
move_to(loc.x, loc.y);
|
|
}
|
|
|
|
void rectangle::inset(int dh, int dv) {
|
|
left += dh; right -= dh;
|
|
top += dv; bottom -= dv;
|
|
}
|
|
|
|
rectangle& rectangle::operator&=(rectangle other) {
|
|
left = std::max(left, other.left);
|
|
top = std::max(top, other.top);
|
|
right = std::min(right, other.right);
|
|
bottom = std::min(bottom, other.bottom);
|
|
return *this;
|
|
}
|
|
|
|
rectangle rect(){
|
|
return rectangle();
|
|
}
|
|
|
|
rectangle rect(location tl, location br){
|
|
return rectangle(tl,br);
|
|
}
|
|
|
|
rectangle rect(int top, int left, int bottom, int right) {
|
|
return rectangle(top, left, bottom, right);
|
|
}
|
|
|
|
std::ostream& operator<< (std::ostream& out, location l) {
|
|
out << '(' << l.x << ',' << l.y << ')';
|
|
return out;
|
|
}
|
|
|
|
struct match {
|
|
char c;
|
|
};
|
|
|
|
struct opt {
|
|
match m;
|
|
};
|
|
|
|
static std::istream& operator>> (std::istream& in, opt o) {
|
|
if(in.eof()){
|
|
in.clear();
|
|
return in;
|
|
}
|
|
char next = in.get();
|
|
if(next != o.m.c) {
|
|
in.putback(next);
|
|
}
|
|
return in;
|
|
}
|
|
|
|
static std::istream& operator>> (std::istream& in, match m) {
|
|
if(in.get() != m.c) {
|
|
in.setstate(std::ios_base::failbit);
|
|
}
|
|
return in;
|
|
}
|
|
|
|
std::istream& operator>> (std::istream& in, location& l) {
|
|
in >> std::ws >> opt{match{'('}};
|
|
in >> l.x;
|
|
in >> match{','} >> std::ws;
|
|
in >> l.y;
|
|
in >> opt{match{')'}};
|
|
return in;
|
|
}
|
|
|
|
std::ostream& operator<< (std::ostream& out, spec_loc_t l) {
|
|
out << static_cast<location&>(l);
|
|
out << ':' << l.spec;
|
|
return out;
|
|
}
|
|
|
|
std::ostream& operator<< (std::ostream& out, sign_loc_t l) {
|
|
out << static_cast<location&>(l);
|
|
out << " -- \"" << l.text << '"';
|
|
return out;
|
|
}
|
|
|
|
std::ostream& operator<< (std::ostream& out, rectangle r) {
|
|
out << "{" << r.topLeft() << " - " << r.bottomRight() << '}';
|
|
return out;
|
|
}
|
|
|
|
std::istream& operator>> (std::istream& in, rectangle& r) {
|
|
location tl;
|
|
location br;
|
|
in >> std::ws >> match{'{'} >> std::ws >> tl;
|
|
in >> std::ws >> match{'-'} >> std::ws >> br >> std::ws >> match{'}'};
|
|
r = rectangle(tl, br);
|
|
return in;
|
|
}
|
|
|
|
std::ostream& operator<< (std::ostream& out, info_rect_t r) {
|
|
out << static_cast<rectangle&>(r);
|
|
out << " -- \"" << r.descr << '"';
|
|
return out;
|
|
}
|
|
|
|
bool is_on_screen(location loc, location view_center, int radius) {
|
|
return loc.x >= view_center.x - radius
|
|
&& loc.x <= view_center.x + radius
|
|
&& loc.y >= view_center.y - radius
|
|
&& loc.y <= view_center.y + radius;
|
|
}
|
|
|
|
location between_anchor_points(location anchor1, location anchor2, int padding){
|
|
// First check the point directly between anchor1 and anchor2 (rounding towards anchor1)
|
|
float center_x_f = (anchor1.x + anchor2.x) / 2.0;
|
|
float center_y_f = (anchor1.y + anchor2.y) / 2.0;
|
|
location point_between;
|
|
if(anchor1.x < anchor2.x){
|
|
point_between.x = floor(center_x_f);
|
|
}else{
|
|
point_between.x = ceil(center_x_f);
|
|
}
|
|
if(anchor1.y < anchor2.y){
|
|
point_between.y = floor(center_y_f);
|
|
}else{
|
|
point_between.y = ceil(center_y_f);
|
|
}
|
|
|
|
// Then if necessary, move back towards anchor1 until it is visible with the desired padding
|
|
int padded_radius = SCREEN_RADIUS - padding;
|
|
while(!is_on_screen(anchor1, point_between, padded_radius)){
|
|
if(anchor1.x < point_between.x - padded_radius){
|
|
--point_between.x;
|
|
}else if(anchor1.x > point_between.x + padded_radius){
|
|
++point_between.x;
|
|
}
|
|
if(anchor1.y < point_between.y - padded_radius){
|
|
--point_between.y;
|
|
}else if(anchor1.y > point_between.y + padded_radius){
|
|
++point_between.y;
|
|
}
|
|
}
|
|
return point_between;
|
|
}
|
|
|
|
std::vector<location> points_containing_most(std::vector<location> points, int padding) {
|
|
return points_containing_most(points, {}, padding);
|
|
}
|
|
|
|
static int points_can_see(location checking_point, std::vector<location> points_of_interest, int padded_radius) {
|
|
int can_see = 0;
|
|
for(location p : points_of_interest){
|
|
if(is_on_screen(p, checking_point, padded_radius)) ++can_see;
|
|
}
|
|
return can_see;
|
|
}
|
|
|
|
std::vector<location> points_containing_most(std::vector<location> points, std::vector<location> required_points, int padding) {
|
|
// Find the bounding box of the given points:
|
|
int min_x = std::numeric_limits<int>::max();
|
|
int min_y = min_x;
|
|
int max_x = std::numeric_limits<int>::min();
|
|
int max_y = max_x;
|
|
|
|
for(location p : points){
|
|
if(p.x < min_x) min_x = p.x;
|
|
if(p.y < min_y) min_y = p.y;
|
|
if(p.x > max_x) max_x = p.x;
|
|
if(p.y > max_y) max_y = p.y;
|
|
}
|
|
|
|
// Expand the bounds by the view radius:
|
|
int padded_radius = SCREEN_RADIUS - padding;
|
|
min_x -= padded_radius; min_y -= padded_radius;
|
|
max_x += padded_radius; max_y += padded_radius;
|
|
// This function's output may include out-of-bounds points, but those will be eliminated
|
|
// by calling closest_point() with an anchor point that is in-bounds.
|
|
|
|
// Calculate how many of the points can be seen from each point in the bounding box:
|
|
std::vector<std::pair<location, int>> points_seen_from;
|
|
location checking_point;
|
|
for(checking_point.x = min_x; checking_point.x <= max_x; ++checking_point.x){
|
|
for(checking_point.y = min_y; checking_point.y <= max_y; ++checking_point.y){
|
|
// Eliminate points that don't see every required point:
|
|
int required_can_see = points_can_see(checking_point, required_points, padded_radius);
|
|
if(required_can_see < required_points.size()) continue;
|
|
|
|
// Count how many desired points can be seen:
|
|
int can_see = points_can_see(checking_point, points, padded_radius);
|
|
points_seen_from.push_back(std::make_pair(checking_point, can_see));
|
|
}
|
|
}
|
|
|
|
if(points_seen_from.empty()) return {};
|
|
|
|
// Sort candidates by how many of the points they see
|
|
std::sort(points_seen_from.begin(), points_seen_from.end(), [](std::pair<location,int> pair1, std::pair<location,int> pair2) -> bool {
|
|
return pair1.second > pair2.second;
|
|
});
|
|
int max_seen = points_seen_from[0].second;
|
|
|
|
// Return all of them that see the max number
|
|
std::vector<location> return_points;
|
|
for(auto pair : points_seen_from){
|
|
if(pair.second == max_seen) return_points.push_back(pair.first);
|
|
}
|
|
|
|
return return_points;
|
|
}
|
|
|
|
int closest_point_idx(std::vector<location> points, location anchor) {
|
|
float min_distance = std::numeric_limits<float>::max();
|
|
int min_idx = -1;
|
|
for(int idx = 0; idx < points.size(); ++idx){
|
|
float distance = fdist(points[idx], anchor);
|
|
if(distance < min_distance){
|
|
min_distance = distance;
|
|
min_idx = idx;
|
|
}
|
|
}
|
|
return min_idx;
|
|
}
|
|
|
|
location closest_point(std::vector<location> points, location anchor) {
|
|
return points[closest_point_idx(points, anchor)];
|
|
} |